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Table 11: Nominal parameter vector

010 020 030

0.731 | 0.108 | 0.082

12.2 Parameters for the Algorithm ZC of Zenieh and Corless

We calculate the bounds 8; using the parameters of the unloaded and the maximum loaded D2R2

as

Bo = 0.0276
B = 1.3254
By = 0.2571

We do not consider any friction in this calculation, because we are compensating the robot for the

friction terms. Note that G is not used in the actual controller, which means that in this design

only upper bounds for the Euler-Lagrange dynamics are used in the control law.

12.3 Parameters for the Algorithm LG+ of Liu and Goldenberg

The values of 837, and ¢, are calculated as

O, =

This yields

ADy;
ADy,
ADjy

PM
Ah

References

0.8386 + 0.1638 cos(q2)
80.1076 + 0.08190 cos(gz)
0.1076

fc, = —0.81905sin(gz)

= 0.1281 + 0.1065] cos(ga)|

= 0.07502 + 0.05327| cos(gs )|
= 0.07502

= \JAD? 1 AD2, + AD},
= pc = 0.050327 sin(go)|

[1] Y. Aoustin and B. Cherki. “Computed torque of robots with estimated velocities”. In Proc.
SYROCTI’9, Capri, Italy, September 1994.
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Table 8: 4; for the unloaded arm

61 2 3
0.678 | 0.033 | 0.029

Regarding the velocity estimates we found an acceptable solution using our averages of section

6. Using an observer design was also found to work, although its design is more complicated.

12 Appendix

12.1 Parameters for the Algorithms SP1 and SP2 of Spong

Identification of the robot D2R2 was performed in [14] and hence nominal values of the parameters
were available. For the parametrization given by (14) the calculated values of these parameters for

the unloaded arm are shown in (table 8).

With the load attached to the end of the second link, we designed a controller to provide

robustness in the intervals

0 kg < Amy < 1.1841 kg
0m < Al <0.0694 m
0 kgm? < AI, < 0.109 kgm? (93)

Then we calculated @ for the maximum loaded arm (table 9). The nominal parameter vector 8, is

Table 9: 6;; for the loaded arm (both weights including bolts)

011 0 03
0.784 | 0.183 | 0.135

chosen as the mean value of the unloaded and loaded arm (table 11). For the algorithm SP2, the

elements of @ are bounded separately which yields the vector p shown in table 10. The uncertainty

Table 10: Uncertainty bounds p; = 6;0 — 6;

P1 P2 P3
0.053 | 0.075 | 0.053

bound p used in the algorithm SP1 is the Euclidean norm of 8y — @yni0aded equals p = 0.1062
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were the simplest to design and showed the best performance. The algorithm LG+ is more difficult
to design and and to implement and showed inferior performance to SP1 and SP2. For this reason,
the added complexity of generating separate uncertainty measures for the inertia, Coriolis (and
gravity) terms does not seem justified. The tracking performance of the algorithm ZC, although
clearly inferior to the other algorithms, is still remarkably good given the simplicity of its on-line

computational requirements.

It is natural at this point to conjecture how these algorithms might compare for robots with
higher degree of freedom. The algorithm ZC is attractive because the on-line computational re-
quirements do not increase significantly as the number of links increases. The computation of the
uncertainty bounds becomes more difficult, but these are performed off-line. However, since the
algorithm basically functions as a nonlinear, high—gain PD controller, it is very likely, in order not
to excite unmodeled dynamics and reject disturbances, that the controller gains (especially €) would
have to be detuned to such an extent that tracking performance would suffer. In other words, the

algorithm is simple but conservative as a result.

The algorithm of Liu/Goldenberg cannot be recommended at this point, since the performance
was not better than the simpler algorithms of Spong. There is no reason to expect this situation

would change as the number of links increases.

The algorithms SP1 and SP2 differ only in the number of uncertainty bounds that must be
calculated and the number of parameters ¢; that must be tuned. These differences are only im-
portant if the values for the uncertainty bounds p; design vary too widely so that using a single
bound leads to a conservative design. For multi-DOF systems, both the off-line calculation of the
regressor matrix and its on—line computation become an issue. The off-line computation problem
is made easier by the increasing availability of symbolic software, such as the package Robotica [8].
On-line computation is also helped greatly by the ever increasing speed and decreasing cost of
microprocessor based controllers. Thus, ease of design is increasing the most important factor in
control system design. In light of this, the algorithms SP1 and SP2 are recommended unless its

on-line computation cannot be achieved in which case the algorithm ZC is recommended.

We note that, although we were able to achieve the high sample rate of 2500Hz, good performance
is still expected at lower rates which, of course, increases the amount of on-line computation
possible. In other words, we would expect performance to degrade gracefully with decreasing sample
rate (up to a point). It would be interesting, therefore, to produce a second comparision between
the algorithms SP1, SP2, and ZC where the sample rate is varied to reflect the computational

advantages of ZC. Such a study is currently under consideration.

Friction compensation as proposed in section 7.1 has proven to improve performance quite well,
although the approximation of the friction model was rather inaccurate. Further improvement
of the friction model used will improve tracking accuracy, however the improvement will be only

marginal, since the largest fraction of the friction model is already incorporated.
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circle and not the tracking from a reposing position to the circle.

Principally we wanted to hold our values for € constant, but during this experiment we had to
increase some of the € to reduce occurring vibrations in order to improve tracking. Specifically we
had to increase € to 45 for the algorithm ZC and epr = 20 and e¢ = 2.5 for the algorithm of LG+.
With these values the algorithm of ZC still showed vibrations for the robot carrying no load. The
results are presented in table 6 and 7. As before, the algorithms SP1 and SP2 gave the best results.

Table 6: Circle trajectory with friction compensation, no load

Algorithm in rad inm

lerrori| | mazerry | |errory| | mazerry | €rroriasksp. | MOLETTiasksp.
SP1 0.00422 0.0007 0.0349 0.0041 0.0104 0.00119
SP2 0.00424 0.0005 0.0331 0.0037 0.0100 0.00113
ZC 0.0681 0.009 0.0602 0.0109 0.0375 0.00527
LG+ 0.00755 0.0012 0.0453 0.0041 0.0151 0.00146

At 6radians/sec angular speed the maximum deviation of the end effector from the circle was just
over Imm with no load and still less than 2mm with load, which is excellent performance. The
algorithm LG+ did not come as close to the performance of SP1 and SP2 as it did for the CPT
trajectory in terms of tracking errors. The algorithm ZC had errors for the first joint about ten

times higher than the other controllers, with a task space error of nearly 4 times higher.

Table 7: Circle trajectory with friction compensation, load

Algorithm in rad inm

lerrori| | mazerry | |errory| | mazerry | €rroriasksp. | MOLETTiasksp.
SP1 0.0106 0.0011 0.0352 0.0047 0.0114 0.00161
SP2 0.0115 0.0012 0.0381 0.0052 0.0124 0.00181
ZC 0.0741 0.0072 0.0766 0.0090 0.0398 0.00383
LG+ 0.0170 0.002 0.0426 0.005 0.0163 0.00182

Figures 8 through 11 show the tracking errors and the torque inputs for the various algorithms
with maximum load for the circle trajectory. The tracking errors during the first second are much

larger than during the remaining time, because of the initial velocity error.

11 Conclusion

For the 2-link D2R2 robot none of the algorithms was difficult to design and to implement and all

showed good performance. A few general comments are in order. The algorithms SP1 and SP2
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Table 4: CPT with friction compensation, no load

Algorithm in rad inm
lerrori| | mazerry | |errory| | mazerry | €rroriasksp. | MOLETTiasksp.

SP1 0.00442 0.0009 0.0224 0.0047 0.00746 0.00135

SP2 0.00472 0.0010 0.0223 0.0052 0.00737 0.00144

ZC 0.0240 0.0042 0.113 0.0028 0.0156 0.00300

LG+ 0.00478 0.0008 0.0251 0.0053 0.00933 0.00195

Table 5: CPT with friction compensation, load
Algorithm in rad inm
lerror| | mazerry | |errory| | mazerry | erroriasksp. | MATETTyasksp.

SP1 0.0110 0.0030 0.0129 0.0026 0.00774 0.00161
SP2 0.0114 0.0032 0.0130 0.0026 0.00754 0.00165
ZC 0.0459 0.0103 0.0568 0.0101 0.0405 0.00839
LG+ 0.0130 0.0034 0.0139 0.0028 0.0099 0.00183

accuracy is improved by up to 50 % and more depending on the error criteria. Still the algorithms
SP1, SP2, and LG+ perform best. However the algorithms SP1 and SP2 seem to be slightly

superior, which is caused by the lower value for e.

Figures 4 through 7 show the tracking errors and the torque inputs of the algorithms SP1,
SP2, ZC, and LG+ with maximum load and with friction compensation for the cubic polynomial

reference trajectory. Plots of all responses are available in [5].

10 Circle Trajectory

In this section we present experimental results for a reference trajectory consisting of a circle in
task space. Due to the limit of the motor torque a maximum angular velocity of w = 6%1 was
achievable(radius 7 = 0.1 m, center=(0.4 m, 0 m)). Higher angular velocities resulted in saturated
input torques when the maximum load was attached to the D2R2. Friction compensation was

included in all experiments.

The motion was performed for 7 seconds after first moving the robot to a position on the circle.
Since the trajectory included only the continuous tracking of the circle the initial velocity error
is large, which results also in a relatively large initial position tracking error. To compensate the
error criteria for this large initial tracking error, we used only the last 6 seconds of the trajectory

data in the calculation of the error measures. By this method we compare only the tracking of the
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Table 1: The values for ¢

SP1 e=1

SP2 € =05V
LG+ | epr =15,ec =1
ZC e =25

The first series of experiments was performed without any compensation for friction. The results

are shown in table 2 for the D2R2 without load and in table 3 with maximum load. As one can

Table 2: CPT, no load

Algorithm in rad inm

lerrori| | mazerry | |errory| | mazerry | €rroriasksp. | MOLETTiasksp.
SP1 0.00624 0.0014 0.0644 0.0097 0.0216 0.00339
SP2 0.00646 0.0014 0.0691 0.0099 0.0231 0.00342
ZC 0.0265 0.0052 0.0672 0.0098 0.0299 0.00471
LG+ 0.00722 0.0016 0.0594 0.0099 0.0207 0.00332

Table 3: CPT, load

Algorithm in rad inm

lerrori| | mazerry | |errory| | mazerry | €rroriasksp. | MOLETTiasksp.
SP1 0.0126 0.0030 0.0636 0.0108 0.0235 0.00375
SP2 0.0129 0.0032 0.0666 0.0108 0.0246 0.00391
ZC 0.0494 0.0121 0.0934 0.0166 0.0503 0.0113
LG+ 0.0143 0.0036 0.0600 0.0108 0.0231 0.00383

see, the algorithms SP1 and SP2 and LG+ result in the lowest tracking errors, while the errors for
the ZC algorithm are considerably larger. Since the ZC design does not uses any lower bounds for
the uncertainty interval (remember, only fo is a lower boundary for the inertia matrix, but it is
not used in the control law) its design is very conservative. For this reason the corresponding value
for € had to be chosen relatively high in order to avoid resonance which detunes the system. The

results are higher tracking errors.

A second series of experiments was performed with the same reference trajectory with friction
compensation as proposed in section 7.1. For the parameters of the Coulomb friction we chose
];1 =1 and 1%2 = 2. The other parameters remained unchanged. The results are shown in table 4

for the D2R2 without load and in table 5 with maximum load.

Comparing the tracking errors to the same trajectory without friction compensation we see that
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parameter vector into the uncertainty parameter vector @ as

mil% + mald + I
mzlfz + I
6= molileo (91)
k1
ks

which leads to the redefined regressor

a1 a1+ az Y13 sgn(d) 0

) (92)
0 a1+ a2 ya23 0 sgn(gz)

However, when this controller was implemented, the tracking performance was not better than the
friction compensation of section 7.1, probably due to the fact that our estimates for the friction
parameters are sufficiently good. When the friction terms were incorporated into the other algo-
rithms, ZC and LG, the performance was, in fact, much worse. Furthermore the friction does not
change significantly, which means that the controllers do not have to be robust to a change in the
friction parameters. For this reason we did not include the friction compensation in the robust
controller, but simply added the fixed compensation term to the total control input torque for all

algorithms.

8 Experimental Results

For the comparison of the different algorithms we ran every controller with the same fixed gains K, A
on several trajectories to analyze the strength and weakness of each design. As mentioned previously
we wanted to chose the gains as high as possible; for that purpose we chose K = diag(30,10) and
A = diag(50,20). For the velocity estimation we used (64) and (66) as described in section 5. For
reasons of space we present here only the results for two trajectories, namely, the joint space cubic
polynomial trajectory, and the circle in task space. See [5] for the complete data on the other

trajectories.

9 Cubic Polynomial Trajectory (CPT)

In this section we present results for a cubic polynomial reference trajectory. The reference consists
of two consecutive trajectories, each lasting for 1 second. In order to pick the lowest possible
value for the ¢; in the various algorithms we first ran the experiment without load, since for this
mechanical configuration vibrations are most likely. The resulting € values are listed in table 1. We
denote by LG+ our modification of the original algorithm LG that places the nominal parameter

vector in the middle of the uncertainty interval. For further design parameters see the Appendix.
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];1 and 1%2 are not necessarily equal. For instance for the D2R2 we found that 1%2 is about twice
as large as ];1, because the motors are designed to carry heavy loads. This results in relatively
higher friction for a load less than the load for which they are designed. Generally friction com-
pensation using our finite differences method for the velocity filter achieved the best improvements.
The Kalman filter and the nonlinear observer used for the control without friction compensation
performed quite inferior compared to the finite difference filters when used with friction compensa-
tion. The main reason for that is probably that these filters have to be tuned again for the friction

compensated system, which is an disadvantage of the observer filter design.

Compensating for the viscous friction did not improve performance significantly, which is due
to the fact that the coefficients of this friction are small enough to be neglected, since our joint
velocities are not too high. Figure 3 shows the friction force as a function of velocity (solid line)
and a friction approximation (dotted line) using only the Coulomb friction. As one can see, for

small velocities this approximation comes very close to the real friction for low velocities.

Friction Force (----- )

=

Velocity

Friction
Approximation (- - -)

Figure 3: Friction force and friction approximation

7.2 Friction Compensation using the Robust Control Law

Another method to compensate for the friction, especially if we are uncertain about the magnitude
of the friction, is to include it into the robust control law. For example, to compensate for the

Coulomb friction using the algorithms (SP1) or (SP2) we would include the Coulomb friction
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with T the sampling period. We chose L; = 3000, L, = 2.25 - 10° for the observer gains which
achieves a performance as good as the Kalman filter in section (6.1). Including the nonlinearity
M~'(x1)7 in the observer improves tracking compared to critically damped linear observer, fur-
thermore we could also add the nonlinear Coriolis and centrifugal terms. However this nonlinear
observer performs equivalent to a linear Kalman design in terms of noise reduction and tracking

accuracy.

7 Friction and Friction Compensation

Even though the manipulator is direct—drive and so does not suffer from gear friction, there is never-
theless considerable bearing friction. For this reason we investigated various friction compensation

schemes to compensate for friction of the form

F(q) = (Fyla| + Fc))sgn(q) (86)

F, represents the coefficient matrix of viscous friction, and F¢ of Coulomb friction. Since friction

is a local effect, F'(q) will be uncoupled among the joints. Then viscous friction is of the form

wlia) -0
Flq| = ST (87)
0 - vnlinl

with v; known constant coefficients. Then the Coulomb friction is of the form

ki --- 0
Fo=| + - (88)
0 - ky,

with known constant coefficients. For more discussion, see [2]

7.1 Friction Compensation by Adding Friction Terms

To compensate the robot for the friction a very simple method is to increase the input torque by

the estimated amount of friction. Adding the Coulomb friction to the model (1) results in

M(a)a+ C(q,@)a+ F(q) = 7 + Fosgn(q) (89)
where FC is our estimate for Fp.

For a two-link robot like the D2R2 FC will be defined as
. k0
Fo = . 90
c l 0 b ] (90)
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not restricted in terms of memory a full-dimensional order design was used. Starting from the

Euler-Lagrange dynamics (1) for the D2R2 without gravity

M(q)g+C(q,d)q =T (74)

we derive
).(1 = X3 (75)
%y = —M7(x1)C(x1,X2)xz + M7 (x1)7 (76)

in state space. x; and x5 represent the joint angle and joint velocity respectively. Then
X = Ax+ M7(xp)+ f(x) (77)
where A represents the linear part and M ~(x;)7 + f(x) the nonlinear part. Further
y = Gx=x3 (78)

which postulates that only the joint positions are observable. A and G are then

0 I
e[ ] o

and

G=[1 0] (80)

with I the two-by-two identity matrix. Assuming exact knowledge of the uncertainty in M we can
define the observer as

X = A%+ L(y — GX) + M~ (y)7 (81)

and
e=xX—X. (82)

(For the actual design we will chose the robot parameters for M lying in the middle of the uncer-

tainty range.) Note that

. 0
e=(A-LG@e+ [ M (x1)C (x1, %2)%2 ] (83)

and therefore e /4 0 as desired. For the pole placement of the linear part we determine the
eigenvalues of (A — LG). They are

2

for both joints. Using the Euler approximation to convert our observer system into discrete time

since it is not linear anymore, leads to
X1 = Xp + (A%g + L(yx — Gxx) + M7 (x1)7)T (85)
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6.1 Kalman Filter

A more sophisticated method to estimate the velocities is by using an optimized Kalman filter for

the following system model as in [3]

M.
—~
L
~—r

Ax(t) + Tw(t) (68)
q(t) = Cx(t)+ e(t) (69)

with z1 and z, representing joint angle and joint velocity, respectively. w represent white Gaussian
noise with covariance c¢. The white noise w(t) is a surrogate for §(¢); the more wide-band § is,
the better is the approximation of the deterministic robotics model by the stochastic model. Since
robot motion is not well characterized by such a stationary random process, ¢ may be regarded as
a filter parameter to be adjusted. e(t) represents the quantization error, assumed white with zero

mean, and a variance R defined as:

02
R=1 70
- (70)
where 8, = 1 = 9.58740-10"rad is the interpulse angle for the D2R2. The
encoder resolution / rad

matrices A, C, and I' using simply the linear part of the D2R2 are given as:

A:[O 1] (71)

0 0
c=[10] (72)
P:[H (73)

The matrices were transferred into a discrete time system with Matlab’s c2d function. The Kalman
gain matrix was estimated with the Matlab’s d1qe function, and the discrete Kalman filter was
designed using Matlab’s destim function. For a sampling rate of 2500 Hz a covariance ¢ of about
1000 achieved the best results for the filter. The results were as good as using (64), depending on

trajectory and controller. For the velocity error estimation the same filter design was used.

6.2 Nonlinear Velocity Observer

The Kalman filter is a linear state observer. Its gains are optimized for the assumed noise. Another
possible solution to our problem would be to design a state observer, which includes the nonlinear-
ities of the robot. Linear state observer using inverse dynamics control to avoid the nonlinearities
have already been designed [1]. The problem with our robust controllers is that we cannot lin-
earize the system exactly due to the uncertainty of the robot parameters. For the state observer

we can chose between full-dimensional order and reduced-dimensional order design; since we are
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is commonly used to compute joint velocity estimates vg [6]. The filter parameter v is a design
parameter. If v is small, it corresponds to a fast pole near z = 0, which provides some low-pass
filtering to reject unwanted sensor noise. The velocity estimation filter design can be optimized
for the given encoder noise statistics to reconstruct vg. For the estimation of the velocity error
ér = gk — g¢ one may use the filter [6]

9 — Gk

T (62)

€y = Vvég_1 +

with ¢ = qx — q,‘f. This equals

. . Gk — k-1 q;‘f - q,‘f_l
e = veg—1 + T — T .

(63)
In other words the desired velocity for the velocity error is calculated using the same filter to avoid
a phase shift between the desired and the actual velocity which would lead to oscillation in the
control. However with the high sampling rate that we are using in our controllers, the above filters
were found to be inadequate and we encountered severe resonance problems from all of the control
algorithms (and even with a simple PD controller). For this reason, more sophisticated filters had

to be designed to reconstruct the velocity from the encoder measurements.

The trade-off lies between noise reduction and using the most recent values for the control. One

solution for the D2R2 is to simply average the last n velocity estimates with g from (60):

1 1
I T Y 64
Ve = ;:0 dr n(‘]k Qk—n) (64)

For the D2R2 n = 3 was found to remove the noise best (at a sampling rate of 2500 Hz). Equation
(64) is comparable to using a lower sample rate for the velocity estimation to avoid the velocity
degradation which comes with such a high sampling frequency. For the velocity errors it turned

out that

A S L, a4
= — —_— = — — n)— — — _ 65
*~ ; A dC e ey A S (65)

which only compensated for the phase shift between desired an actual velocity was not working
sufficiently. Therefore the filter

. 1t 9k — Qk—1 q;‘f - q;‘f_l
AT _ 66
€= ; ék—i + T T (66)

had to be used. This combination eliminates high frequency noise in a very simple way. Of course,

for the velocity estimation also
v = lnz_:l v ; + T Tk (67)
k n rar k—1 T

can be used. However the tracking errors seem to be slightly larger with this velocity filter than
with (64). The choice n = 3 achieved the best results in this case also.
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5 Sampling Rate and Velocity Estimates

The controllers are designed in continuous time and the theoretical proofs of convergence are valid
only in continuous time. In continuous time the tracking errors generally decrease as gains are
increased. This is, in fact, another consequence of the passivity property of rigid robots. Therefore
it is desirable to chose the gains as high as possible in order to improve accuracy. On the other
hand high gains require a high sampling rate to guarantee that the approximation of the continuous
time controller by the discrete time controller stays feasible. Choosing the sampling rate too low
for the selected gains results in chattering of the input torques. Since the input torques are limited
due to the characteristics of the motors the chattering might become visible in the joint positions,
which increases the chattering in the velocity to an even higher extend. Since the velocity is used
in the control law this feedback will cause the robot to vibrate. Furthermore these vibrations might
resonate the system, and the performance will deteriorate if gains are chosen too high. Because
of the speed of our DSP development system, we were able to run all control experiments using a

sample rate of 25600Hz. The gains were empirically designed accordingly for the given sample rate.

Note that all of the algorithms depend on one or more parameters ¢;. It can be shown that
increasing these e—values will also decrease the chattering. The control laws are discontinuous at
€; = 0, so for any choice of gains and sampling period the control will chatter for small e. However
increasing € too high will reduce accuracy, since these parameters determine the size of the ultimate
boundedness region in state space. In other words, increasing € has the effect of detuning the system
to reject, unmodeled dynamics, noise and disturbances. This suggest that there exists an optimal
value for e. Below this value the chattering will resonate the system and decrease accuracy, above
this value we are detuning the system more than necessary which results in larger tracking errors.
Our approach was to empirically determine the smallest e-values and largest gains, K, A, possible

for the given trajectories.

6 Velocity Estimation

The robust control algorithms in this paper assume that both the joint positions ¢ and joint
velocities ¢ are measured exactly. However, as is commonly the case, only the joint positions are
available from optical encoders, and the joint velocities must be estimated from these position
measurements [6]. Generally, one finds that simply computing the joint velocities using the Euler

approximation
_ 9k — 9k
T

does not work, especially as the sampling rate increases [3], due to the encoder measurement noise.

]2 (60)
For this reason, several different schemes to estimate the velocity were analyzed and tested. In

general, a filtered derivative of the form

Vg = VVg-1 + %, (61)

11



In order to quantitatively compare the performance of the various algorithms we used several
error measures. We computed both the Ly and L., norms of the tracking error of each joint in
joint space and the Ly and L., norm of the end—effector tracking error in task space. These errors
are presented in table form in subsequent sections along with plots of the errors themselves and of

the torque inputs.

Recall that the Ly norm of the tracking error of joint n is

(52)

where n € {1,2} is the joint number. Since data is only send back at discrete time intervals, we

discretize equation (52) as:

Because /AT is constant we will include it on the left side which yields our definition of the joint

space error criteria:

lerrory| := (55)
The maximal error in joint space is
mazerror, = max|¢, — q°| (56)
The Ls norm of the joint error vector is given by
ty
eli= | flar— ot + (a2 - g et (57)
to

However if we are looking at the desired “end-effector” position we should weight the error of each
joint accordingly. Therefore a better single criterion is the error in task space. We define the task
space error as the distance between the actual and the desired “end-effector” position. Analogous
to (55) we define

E d
T—z
|erT0Tyask space| = Z H( 4 ) (58)
i=1 y—-vy 9
where || - ||2 is the Euclidean norm. The maximum error in task space is
z —z¢
MATETTOTask space ‘= Max 4 (59)
y-y* /|,

For our experimental comparison we will present the measures (55), (56), (58), and (59).
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where A represents the difference between the maximum load and no load cases. These uncertainty
bounds may depend on trigonometric functions of the generalized coordinates or they can be further
simplified by using bound of these trigonometric functions. We note that Liu and Goldenberg [7]
define the nominal values of 83, and O¢, by using the unloaded arm, i.e. at the lower end of the
uncertainty interval. We found that the performance of the algorithm on the actual manipulator
with load was poor with these nominal parameters. For this reason, in this paper we will instead
define the nominal values in the center of the uncertainty interval as in the algorithms (SP1) and

(SP2), as doing so greatly improves the tracking performance.

Comparing this algorithm with the algorithms (SP1) and (SP2) of Spong, we see that it requires
more on-line computation. However the principle of the control law is very similar to SP1 or SP2
and in fact mainly just a different parameterization of the Euler-Lagrange dynamics, using an

extended definition of the parameter vector 8.

4 The Reference Trajectories and Error Criteria

In order to compare the performance of the controllers on D2R2 we picked three joint space tra-

jectories and one task space trajectory. The joint space trajectories were:

1. The output of a linear second order critically damped reference model.
G + 2¢wq? + w?q? = wiv (47)
where v was a step change from zero to ninety degrees for each joint.
2. A cubic polynomial trajectory (CPT)
q? = ao + a1t + agt? + ast® (48)

where the desired motion is from zero to ninety degrees and back to zero degrees over two

seconds.

3. A sinusoid

q? = asin(wt) (49)

The task space trajectory was a circle of radius r located at coordinates (a,b) in the robot’s

workspace, i.e.,

:Ed

a + rcos(wt) (50)
y? b+ rsin(wt) (51)

The inverse kinematics of the robot were then used to translate this task space trajectory into a

joint space trajectory. The reader is referred to [5] for a detailed description of these trajectories.



with the additional control inputs ups and uc, defined as follows, using the same technique as in
[11]:

—oumdba i [G@r] > ar
up = (38)
%Yﬂz/}(a)r if HYI\I/}(a)rH < erm
(LG)
—pc@% if HYCT(q,V)I‘H > €c
uc = (39)
Zevd@vr i Y@<

where €7, €¢, and are positive constants. It is proved in [7] that the tracking error is uniformly
ultimately bounded using the same Lyapunov function (20) as in [11]. For the two-link robot,

D2R2, the various quantities are given by

0
zw@zlm“z ] (40)
0 a; ao
di1
On(a) = | dia (41)
da2
and di1,d12, and dap as in (3)
zu¢w=[%m+@+”m (42)
—q10
0c(a)=h (43)

with h as in (5). Recall that 837 and 8¢ are not necessarily constant vectors in this formulation.

The uncertainty bounds, par and p¢, are obtained as:

ot = \[0%y, + P, + Py (44)
pc = ph (45)
with
pr;, > Adii(g2) (46)
oM, > Adia(q2)
oy, > Ada
prn > Ah(g2)



with y := C(q,q)v and y; = T L;(q)v where L;(q) is a square matrix.
The proof of uniform ultimate boundedness utilizes the Lyapunov function

V= 5I-TM(q)r + 61T61 (29)

Comparing this algorithm with the controllers SP1 and SP2, we see that ZC requires less on-line
computation because no regressor matrix is computed. However, the calculation of the uncertainty

bounds is more complicated.

3.3 The Algorithm LG

Liu and Goldenberg [7] propose a robust controller that does not linearly parameterize the La-
grangian as a whole, but, instead, parameterizes the inertia matrix M and the Coriolis and cen-

trifugal matrix C' as
M(a)d = Ya(4)0n(a) (30)
and

C(q,9)a = Yo(q)0c(a)- (31)

Thus, the uncertainty is represented by the vectors 83s and @¢, which are no longer constant,
but are, in general, functions of the configuration . These uncertainty terms are assumed to be

bounded as follows:

108r(a)ll := [10as(a) — Oary ()| < pra(a) (32)
16c(a)ll = [|6c(a) — Oc,(a)ll < pc(a) (33)

where 3, (q and 8¢, (q) represent the nominal values. The nominal control vector is then defined
as in [11]

o = Mo(q)a+ Co(q,q)v— Kr (34)
Ya(a)On,(a) + Ye(a, v)0c,(a) — Kr (35)

with the quantities r, v, and a are defined as in (11). The control input 7 is then defined as

T = 7o+ Yu(a)uy + Ye(q,v)uc (36)
= Yu(a)(0um,(a) + unr) + Yo(q,v)(0c,(q) + uc) — Kr

where the vectors ups and ucg are designed to achieve robustness to the parametric uncertainty.

Substituting the control law (36) in (1) they obtain after some algebra

M(q)r+ C(q,q)r + Kr = Yy(a)(0n + unr) + Yo (d, v)(0c + uc) (37)



where §; denotes the i*" component of the vector Y r and ¢; are positive constants.

With either of these additional control inputs, (SP1) or (SP2), the control law (12) is continuous

and it can be shown using the Lyapunov function

1 . .
V=T M(q)r+ §"ATKG (20)

that the closed loop systems are uniformly ultimately bounded (u.u.b.) as defined in [4]. See [11]
for the proof.

3.2 The Algorithm ZC

The algorithm, ZC, of Zenieh and Corless [15] does not exploit the linear parametrization property.
Uncertainty in the physical parameters is estimated by the bounds Gy, 81, and s shown below.

These inequalities hold for all q, q, and all uncertainty §, which is called the lumped uncertainty

term,
Amin[M(q)] 2 Bo > 0 (21)
Amax[M(q)] S /31 (22)
1C(a, Q)| < B:|l4ll (23)

where Apin[ ] and Apaz[-] denote, respectively, the minimum and maximum eigenvalues of a matrix.
Zenieh and Corless propose an s-a tracking controller with the rate of convergence o > 0 and a
prespecified tolerance s > 0, which guarantees that the robot trajectory exponentially converges to
any desired trajectory with the rate o and to within the tolerance s. Choosing a positive definite

symmetric diagonal gain matrix A satisfying
Amin[A] 2 a (24)
with o the desired convergence rate and r, v, and g defined as in (11), the controller is given by

T = —Kr-— %
[lox|+ (ZC) (25)

p = B[Vl + Bollv]lllal

where K is any positive-definite, symmetric, matrix which satisfies
Amin[K] > algl' (26)

€ is any positive scalar satisfying

Bo

e< (a.s)z)\mm[K]E (27)

The bound fB; may be computed using

B> [ S IE@)? Va8 (28)



control vector 7¢ as
T = TO"'Y(q:q:Vaa)u: Y(q7q7v7a)(00+u) — Kr (12)

where the vector u € RP is an additional control input designed to provide robustness to the

parameter uncertainty. Substituting (12) into (7) yields, after some algebra,

M(q)i+ C(q,q)r + Kr =Y(q,q,v,a)(6+ u) (13)

For the parameterization 8 of D2R2 we define
myl? + mel2 + 1
0= mglgz + Ig (14)

malilco

which leads to the regressor matrix,

(15)

a1 a1+ az Y3 ]

Y(q,q,v,a)=
(.4 ) [0 a1+ az Yo3

where

Y13 = cos(q2)(2a1 + az) — sin(q2)(q1v2 + G2(v1 + v2))
Y23 = cos(qgz)a; + sin(ga2)div1
For the nominal parameter vector 8y we chose the mean value of 8 for the unloaded arm and the

arm carrying a maximum load, i.e.

1
00 = E(Omaximumload - 0unloaded) (16)

The algorithm SP1 calculates the additional control input u in (12) based on a single measure

of the uncertainty, p, where

p= (Ep: pi)? H
=1
as follows: —p% if HYTI-H > €
T
N (SP1) 19
2yTe i [YTr|<e
and € > 0.

The algorithm SP2 assigns different “weights” or gains to the component of u by defining the

i*h component of the control input u as

—Pié—g if &> e

u; = (SP2) (19)

2 if & <€



2. (Linear Parametrizability) There exist a vector 8 = (04, ...,8,)T € RP, of link parameters,

and a matrix Y(q,q, q), called the regressor, such that

M(q)4+C(q,9)q=Y(q,4,9)0 =7 (7)

3 The Algorithms and Trajectories

In this section we describe the four robust control algorithms considered in this paper. The first
two algorithms were derived by Spong in [11]. The third algorithm was derived by Zenieh and
Corless in [15]. The fourth algorithm is due to Liu and Goldenberg and appeared in [7]. The four
algorithms will be designated SP1, SP2, ZC, and LG, respectively, for conciseness. All of these
algorithms exploit the skew—symmetry property of the robot dynamics and guarantee uniform
ultimate boundedness of the tracking error provided bounds on the uncertainty are given a priori
as described in, for example, [4]. In addition, the algorithms SP1 and SP2 exploit the linear
parametrizability property. We detail the specifics of these algorithms below. The reader is referred
to the original references for the proofs of stability and convergence which all use similar Lyapunov

arguments.

3.1 The Algorithms SP1 and SP2

Both of the algorithms SP1 and SP2 from [11] exploit the linear parameterizability of robot dy-
namics given by equation (7). It is assumed only that the parameter vector € is “uncertain” which
means that there exists a nominal parameter vector 8, = (6o, .. .HPO)T € RP and nonnegative

constants p; € Ry such that,for:=1,...,p,

|6:] = 116 = Gioll < ps. (8)
Define a nominal control vector 7¢ as
To = Mo(q)a+ Co(q,q)v — Kr (9)
= Y(q,q,V,a)OO — Kr (10)
where the quantities r, v, and a are given by
r=q+A§
v = qd —Aq
a=v
~ d
d=q-q (11)

and q¢ is a given twice continuously differentiable reference trajectory. The gain matrices K and

A are positive definite diagonal matrices. The control input 7 is defined in terms of the nominal



the vector of applied joint torques. Refering to Figure (2), the terms in the dynamic equations are

given by
Figure 2: Schematic diagram of the two-link direct-drive D2R2
di1 dio
M(q) = l ] (2)
do1 dao
with
dip = myl% + ma(l2 + 1% + 2l cos ) + I + Iy,
dia = da1 = ma(1%, + L1l cos q3) + I,
dgg = mglfz + Ig. (3)
, hgy  h(¢1+ ¢
Cla,q)= | " Matd) (4)
—hql 0
with
h = —mglllcg sin qa. (5)

The link parameters for the D2R2 are given in the appendix.
We recall the fundamental properties of skew symmetry and linear parametrizability of these

equation. See [9] for details:

1. (Skew Symmetry) The matrix

N(q,q) = M(q) — 2C(q, q) (6)

is skew symmetric. This implies that the robot dynamics define a passive mapping between

joint torque and joint velocity.



Figure 1: The two-link planar arm “D2R2”

control algorithms themselves are implemented on an MX-31 DSP development system from Inte-
grated Motions, Inc., (IMI), which utilizes a Texas Instruments TMS320C31 32-bit floating point
processor with 60 ns single—cycle instruction execution time. Control Programs are written in C,
compiled on a Dell PC486 workstation, and loaded into the MX-31 through a serial communication
link. IMI provides a library of support functions for tasks such as encoder reading and serial com-
munication port service. Data are sent back to the PC during robot operation through a second

serial communication link and stored in the PC for analysis in Matlab.

2 Robot Dynamics

Since the motion of the SCARA-like manipulator is in the horizontal plane, the gravitational
torques about the joints are identically zero, which simplifies the derivation of both the dynamic
equations of motion and the control input. The standard Euler-Lagrange dynamic equations for

this system may therefore be written as [13]
M(q)q+C(q,q)q=7 with g€ R™ 7€ R™ (1)

where M(q) € R™™ is the inertia matrix, and q,q, and § are the joint angles, velocities, and

accelerations, respectively. The vector C(q, q)q represents centrifugal and Coriolis terms, and 7 is
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Abstract

In this paper we present an experimental comparison of recent passivity based robust control
algorithms on a two link direct drive robot arm. The manipulator is actuated with high torque
brushless DC motors and is controlled by a DSP development system interfaced to a PC486
workstation. Four algorithms are compared with respect to ease of design, implementation, and

performance of the closed loop systems.

1 Introduction

In this paper we summarize the results of a systematic comparison of passivity based robust con-
trol algorithms on the two-link direct drive robot manipulator shown below in Figure (1). Four
algorithms are compared with respect to ease of design, implementation, and performance of the
closed-loop system. The reader is referred to the report [5] for the complete study, which also

includes data for additional algorithms beyond those presented here.

The manipulator used in the study, known as D2R2, was constructed with Compumotor Model
DM1015-B brushless DC motors, controlled via transformerless drivers operating in torque mode.
Maximum torque is produced at £8 V from the higher-level controller which corresponds to a
maximum torque command of +£31.2 Nm [10]. Integrated optical encoders provide 655360 lines of

resolution [10]. The links were designed in AutoCAD and constructed from aluminum [14]. The
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9216428



