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Table 

� Nominal parameter vector

��� ��� ���

���

 ��
�� �����

���� Parameters for the Algorithm ZC of Zenieh and Corless

We calculate the bounds �i using the parameters of the unloaded and the maximum loaded D�R�

as

�� � ������

�� � 
�
���

�� � �����


We do not consider any friction in this calculation� because we are compensating the robot for the

friction terms� Note that �� is not used in the actual controller� which means that in this design

only upper bounds for the Euler�Lagrange dynamics are used in the control law�

���� Parameters for the Algorithm LG� of Liu and Goldenberg

The values of �M�
and �C�

are calculated as

�M�
�

�
BB�

���
�� � ��
�
� cos�q��

���
��� � ����
�� cos�q��

��
���

�
CCA

�C�
� ����
�� sin�q��

This yields

�D�� � ��
��
 � ��
���j cos�q��j
�D�� � �������� ����
��j cos�q��j
�D�� � �������

�M �
q
�D�

�� ��D�
�� � �D�

��

�h � �C � �����
��j sin�q��j
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Table �� �i for the unloaded arm

�� �� ��

����� ���

 �����

Regarding the velocity estimates we found an acceptable solution using our averages of section

�� Using an observer design was also found to work� although its design is more complicated�

�� Appendix

���� Parameters for the Algorithms SP� and SP� of Spong

Identi�cation of the robot D�R� was performed in �
�� and hence nominal values of the parameters

were available� For the parametrization given by �
�� the calculated values of these parameters for

the unloaded arm are shown in �table ���

With the load attached to the end of the second link� we designed a controller to provide

robustness in the intervals

� kg � �m� � 
�
��
 kg

� m � �lc� � ������ m

� kgm� � �I� � ��
�� kgm� ��
�

Then we calculated � for the maximum loaded arm �table ��� The nominal parameter vector �� is

Table �� �il for the loaded arm �both weights including bolts�

��l ��l ��l

����� ��
�
 ��

�

chosen as the mean value of the unloaded and loaded arm �table 

�� For the algorithm SP�� the

elements of �� are bounded separately which yields the vector � shown in table 
�� The uncertainty

Table 
�� Uncertainty bounds �i � �i� � �i

�� �� ��

����
 ����� ����


bound � used in the algorithm SP
 is the Euclidean norm of �� � �unloaded equals � � ��
���

��



were the simplest to design and showed the best performance� The algorithm LG� is more di�cult

to design and and to implement and showed inferior performance to SP
 and SP�� For this reason�

the added complexity of generating separate uncertainty measures for the inertia� Coriolis �and

gravity� terms does not seem justi�ed� The tracking performance of the algorithm ZC� although

clearly inferior to the other algorithms� is still remarkably good given the simplicity of its on�line

computational requirements�

It is natural at this point to conjecture how these algorithms might compare for robots with

higher degree of freedom� The algorithm ZC is attractive because the on�line computational re�

quirements do not increase signi�cantly as the number of links increases� The computation of the

uncertainty bounds becomes more di�cult� but these are performed o��line� However� since the

algorithm basically functions as a nonlinear� high�gain PD controller� it is very likely� in order not

to excite unmodeled dynamics and reject disturbances� that the controller gains �especially �� would

have to be detuned to such an extent that tracking performance would su�er� In other words� the

algorithm is simple but conservative as a result�

The algorithm of Liu Goldenberg cannot be recommended at this point� since the performance

was not better than the simpler algorithms of Spong� There is no reason to expect this situation

would change as the number of links increases�

The algorithms SP
 and SP� di�er only in the number of uncertainty bounds that must be

calculated and the number of parameters �i that must be tuned� These di�erences are only im�

portant if the values for the uncertainty bounds �i design vary too widely so that using a single

bound leads to a conservative design� For multi�DOF systems� both the o��line calculation of the

regressor matrix and its on�line computation become an issue� The o��line computation problem

is made easier by the increasing availability of symbolic software� such as the package Robotica ����

On�line computation is also helped greatly by the ever increasing speed and decreasing cost of

microprocessor based controllers� Thus� ease of design is increasing the most important factor in

control system design� In light of this� the algorithms SP
 and SP� are recommended unless its

on�line computation cannot be achieved in which case the algorithm ZC is recommended�

We note that� although we were able to achieve the high sample rate of ����Hz� good performance

is still expected at lower rates which� of course� increases the amount of on�line computation

possible� In other words� we would expect performance to degrade gracefully with decreasing sample

rate �up to a point�� It would be interesting� therefore� to produce a second comparision between

the algorithms SP
� SP�� and ZC where the sample rate is varied to re!ect the computational

advantages of ZC� Such a study is currently under consideration�

Friction compensation as proposed in section ��
 has proven to improve performance quite well�

although the approximation of the friction model was rather inaccurate� Further improvement

of the friction model used will improve tracking accuracy� however the improvement will be only

marginal� since the largest fraction of the friction model is already incorporated�
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circle and not the tracking from a reposing position to the circle�

Principally we wanted to hold our values for � constant� but during this experiment we had to

increase some of the � to reduce occurring vibrations in order to improve tracking� Speci�cally we

had to increase � to �� for the algorithm ZC and �M � �� and �C � ��� for the algorithm of LG��

With these values the algorithm of ZC still showed vibrations for the robot carrying no load� The

results are presented in table � and �� As before� the algorithms SP
 and SP� gave the best results�

Table �� Circle trajectory with friction compensation� no load

Algorithm in rad in m

jerror�j maxerr� jerror�j maxerr� errortasksp� maxerrtasksp�

SP� ������� ������ �����	 ������ ������ ������	

SP� ������� �����
 ������ ������ ������ �������

ZC ������ ����	 ������ �����	 �����
 ����
��

LG
 �����

 ������ ����
� ������ ����
� �������

At �radians sec angular speed the maximum deviation of the end e�ector from the circle was just

over 
mm with no load and still less than �mm with load� which is excellent performance� The

algorithm LG� did not come as close to the performance of SP
 and SP� as it did for the CPT

trajectory in terms of tracking errors� The algorithm ZC had errors for the �rst joint about ten

times higher than the other controllers� with a task space error of nearly � times higher�

Table �� Circle trajectory with friction compensation� load

Algorithm in rad in m

jerror�j maxerr� jerror�j maxerr� errortasksp� maxerrtasksp�

SP� ������ ������ ����
� ������ ������ �������

SP� �����
 ������ ������ ����
� ������ �������

ZC ������ ������ ������ ����	� ����	� �������

LG
 ������ ����� ������ ����
 ������ �������

Figures � through 

 show the tracking errors and the torque inputs for the various algorithms

with maximum load for the circle trajectory� The tracking errors during the �rst second are much

larger than during the remaining time� because of the initial velocity error�

�� Conclusion

For the ��link D�R� robot none of the algorithms was di�cult to design and to implement and all

showed good performance� A few general comments are in order� The algorithms SP
 and SP�

��



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-12

-10

-8

-6

-4

-2

0

2

4

6

8
x 10

-3

time (s)

e
rr

o
r 

(r
a
d
)

Tracking Errors (Joint 1:-----, Joint 2:- - -)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-15

-10

-5

0

5

10

15

20

25

30

time (s)

to
rq

u
e
 (

N
m

)

Torque Input (Joint 1:-----, Joint 2:- - -)

Figure �� Algorithm ZC with CPT Trajectory� Friction Compensation� Maximum Load

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-3

-2

-1

0

1

2
x 10

-3

time (s)

e
rr

o
r 

(r
a
d
)

Tracking Errors (Joint 1:-----, Joint 2:- - -)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-15

-10

-5

0

5

10

15

20

25

time (s)

to
rq

u
e
 (

N
m

)

Torque Input (Joint 1:-----, Joint 2:- - -)

Figure �� Algorithm LG� with CPT Trajectory� Friction Compensation� Maximum Load

�




0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

time (s)

e
rr

o
r 

(r
a
d
)

Tracking Errors (Joint 1:-----, Joint 2:- - -)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-25

-20

-15

-10

-5

0

5

10

15

20

time (s)

to
rq

u
e
 (

N
m

)

Torque Input (Joint 1:-----, Joint 2:- - -)

Figure �� Algorithm SP
 with CPT Trajectory� Friction Compensation� Maximum Load

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-3

-2

-1

0

1

2

3
x 10

-3

time (s)

e
rr

o
r 

(r
a
d
)

Tracking Errors (Joint 1:-----, Joint 2:- - -)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-25

-20

-15

-10

-5

0

5

10

15

20

time (s)

to
rq

u
e
 (

N
m

)

Torque Input (Joint 1:-----, Joint 2:- - -)

Figure �� Algorithm SP� with CPT Trajectory� Friction Compensation� Maximum Load

��



Table �� CPT with friction compensation� no load

Algorithm in rad in m

jerror�j maxerr� jerror�j maxerr� errortasksp� maxerrtasksp�

SP� ������� �����	 ������ ������ ������� ������


SP� ������� ������ ������ ����
� ������� �������

ZC ������ ������ ����� ������ ����
� �������

LG
 ������� ������ ����
� ����
� ����	�� �����	


Table �� CPT with friction compensation� load

Algorithm in rad in m

jerror�j maxerr� jerror�j maxerr� errortasksp� maxerrtasksp�

SP
 ���

� ����
� ���
�� ������ ������� ����
�


SP� ���

� ����
� ���

� ������ ������� ����
��

ZC ������ ���
�
 ������ ���
�
 ������ �����
�

LG� ���

� ����
� ���

� ������ ������ ����
�


accuracy is improved by up to �� " and more depending on the error criteria� Still the algorithms

SP
� SP�� and LG� perform best� However the algorithms SP
 and SP� seem to be slightly

superior� which is caused by the lower value for ��

Figures � through � show the tracking errors and the torque inputs of the algorithms SP
�

SP�� ZC� and LG� with maximum load and with friction compensation for the cubic polynomial

reference trajectory� Plots of all responses are available in ����

�� Circle Trajectory

In this section we present experimental results for a reference trajectory consisting of a circle in

task space� Due to the limit of the motor torque a maximum angular velocity of � � � rad
s was

achievable�radius r � ��
 m� center����� m� � m��� Higher angular velocities resulted in saturated

input torques when the maximum load was attached to the D�R�� Friction compensation was

included in all experiments�

The motion was performed for � seconds after �rst moving the robot to a position on the circle�

Since the trajectory included only the continuous tracking of the circle the initial velocity error

is large� which results also in a relatively large initial position tracking error� To compensate the

error criteria for this large initial tracking error� we used only the last � seconds of the trajectory

data in the calculation of the error measures� By this method we compare only the tracking of the
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Table 
� The values for �

SP� � � �

SP� �i � ��
 �i

LG
 �M � ��
� �C � �

ZC � � �


The �rst series of experiments was performed without any compensation for friction� The results

are shown in table � for the D�R� without load and in table 
 with maximum load� As one can

Table �� CPT� no load

Algorithm in rad in m

jerror�j maxerr� jerror�j maxerr� errortasksp� maxerrtasksp�

SP� ������� ������ ������ ����	� ������ ������	

SP� ������� ������ ����	� ����		 ������ �������

ZC �����
 ����
� ������ ����	� ����		 �������

LG
 ������� ������ ���
	� ����		 ������ �������

Table 
� CPT� load

Algorithm in rad in m

jerror�j maxerr� jerror�j maxerr� errortasksp� maxerrtasksp�

SP� ������ ������ ������ ������ �����
 ������


SP� �����	 ������ ������ ������ ������ �����	�

ZC ����	� ������ ���	�� ������ ���
�� ������

LG
 ������ ������ ������ ������ ������ �������

see� the algorithms SP
 and SP� and LG� result in the lowest tracking errors� while the errors for

the ZC algorithm are considerably larger� Since the ZC design does not uses any lower bounds for

the uncertainty interval �remember� only �� is a lower boundary for the inertia matrix� but it is

not used in the control law� its design is very conservative� For this reason the corresponding value

for � had to be chosen relatively high in order to avoid resonance which detunes the system� The

results are higher tracking errors�

A second series of experiments was performed with the same reference trajectory with friction

compensation as proposed in section ��
� For the parameters of the Coulomb friction we chose
#k� � 
 and #k� � �� The other parameters remained unchanged� The results are shown in table �

for the D�R� without load and in table � with maximum load�

Comparing the tracking errors to the same trajectory without friction compensation we see that


�



parameter vector into the uncertainty parameter vector � as

� �

�
BBBBBBB�

m�l
�
c� �m�l

�
� � I�

m�l
�
c� � I�

m�l�lc�

k�

k�

�
CCCCCCCA

��
�

which leads to the rede�ned regressor

�
a� a� � a� y�� sgn� $q�� �

� a� � a� y�� � sgn� $q��

�
����

However� when this controller was implemented� the tracking performance was not better than the

friction compensation of section ��
� probably due to the fact that our estimates for the friction

parameters are su�ciently good� When the friction terms were incorporated into the other algo�

rithms� ZC and LG� the performance was� in fact� much worse� Furthermore the friction does not

change signi�cantly� which means that the controllers do not have to be robust to a change in the

friction parameters� For this reason we did not include the friction compensation in the robust

controller� but simply added the �xed compensation term to the total control input torque for all

algorithms�

� Experimental Results

For the comparison of the di�erent algorithms we ran every controller with the same �xed gainsK� %

on several trajectories to analyze the strength and weakness of each design� As mentioned previously

we wanted to chose the gains as high as possible& for that purpose we chose K � diag�
�� 
�� and

% � diag���� ���� For the velocity estimation we used ���� and ���� as described in section �� For

reasons of space we present here only the results for two trajectories� namely� the joint space cubic

polynomial trajectory� and the circle in task space� See ��� for the complete data on the other

trajectories�

� Cubic Polynomial Trajectory �CPT�

In this section we present results for a cubic polynomial reference trajectory� The reference consists

of two consecutive trajectories� each lasting for 
 second� In order to pick the lowest possible

value for the �i in the various algorithms we �rst ran the experiment without load� since for this

mechanical con�guration vibrations are most likely� The resulting � values are listed in table 
� We

denote by LG� our modi�cation of the original algorithm LG that places the nominal parameter

vector in the middle of the uncertainty interval� For further design parameters see the Appendix�
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#k� and #k� are not necessarily equal� For instance for the D�R� we found that #k� is about twice

as large as #k�� because the motors are designed to carry heavy loads� This results in relatively

higher friction for a load less than the load for which they are designed� Generally friction com�

pensation using our �nite di�erences method for the velocity �lter achieved the best improvements�

The Kalman �lter and the nonlinear observer used for the control without friction compensation

performed quite inferior compared to the �nite di�erence �lters when used with friction compensa�

tion� The main reason for that is probably that these �lters have to be tuned again for the friction

compensated system� which is an disadvantage of the observer �lter design�

Compensating for the viscous friction did not improve performance signi�cantly� which is due

to the fact that the coe�cients of this friction are small enough to be neglected� since our joint

velocities are not too high� Figure 
 shows the friction force as a function of velocity �solid line�

and a friction approximation �dotted line� using only the Coulomb friction� As one can see� for

small velocities this approximation comes very close to the real friction for low velocities�

Velocity

Friction Force (-----)

Friction

Approximation (- - -)

Figure 
� Friction force and friction approximation

��� Friction Compensation using the Robust Control Law

Another method to compensate for the friction� especially if we are uncertain about the magnitude

of the friction� is to include it into the robust control law� For example� to compensate for the

Coulomb friction using the algorithms �SP
� or �SP�� we would include the Coulomb friction
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with T the sampling period� We chose L� � 
���� L� � ���� � 
�� for the observer gains which

achieves a performance as good as the Kalman �lter in section ���
�� Including the nonlinearity

M���x��� in the observer improves tracking compared to critically damped linear observer� fur�

thermore we could also add the nonlinear Coriolis and centrifugal terms� However this nonlinear

observer performs equivalent to a linear Kalman design in terms of noise reduction and tracking

accuracy�

	 Friction and Friction Compensation

Even though the manipulator is direct�drive and so does not su�er from gear friction� there is never�

theless considerable bearing friction� For this reason we investigated various friction compensation

schemes to compensate for friction of the form

F � $q� � �Fv j $qj� FC��sgn� $q� ����

Fv represents the coe�cient matrix of viscous friction� and FC of Coulomb friction� Since friction

is a local e�ect� F � $q� will be uncoupled among the joints� Then viscous friction is of the form

Fv j $qj �

�
���
v�j $q�j � � � �

���
� � �

���

� � � � vnj $qnj

	


� ����

with vi known constant coe�cients� Then the Coulomb friction is of the form

FC �

�
���
k� � � � �
���

� � �
���

� � � � kn

	


� ����

with known constant coe�cients� For more discussion� see ���

��� Friction Compensation by Adding Friction Terms

To compensate the robot for the friction a very simple method is to increase the input torque by

the estimated amount of friction� Adding the Coulomb friction to the model �
� results in

M�q��q� C�q� $q� $q� F � $q� � � � #FCsgn� $q� ����

where #FC is our estimate for FC �

For a two�link robot like the D�R� #FC will be de�ned as

#FC �

�
#k� �

� #k�

�
����
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not restricted in terms of memory a full�dimensional order design was used� Starting from the

Euler�Lagrange dynamics �
� for the D�R� without gravity

M�q��q� C� $q� �q� $q � � ����

we derive

$x� � x� ����

$x� � �M���x��C�x��x��x� �M���x��� ����

in state space� x� and x� represent the joint angle and joint velocity respectively� Then

$x � Ax�M���x�� � f�x� ����

where A represents the linear part and M���x��� � f�x� the nonlinear part� Further

y � Gx � x� ����

which postulates that only the joint positions are observable� A and G are then

A �

�
� I

� �

�
����

and

G �
h
I �

i
����

with I the two�by�two identity matrix� Assuming exact knowledge of the uncertainty in M we can

de�ne the observer as
$#x � A#x� L�y� G#x� �M���y�� ��
�

and

e � x� #x� ����

�For the actual design we will chose the robot parameters for M lying in the middle of the uncer�

tainty range�� Note that

$e � �A� LG�e�

�
�

M���x��C�x��x��x�

�
��
�

and therefore e �� � as desired� For the pole placement of the linear part we determine the

eigenvalues of �A� LG�� They are

	��� � �L�

� �
q

L�

�

� � L�� ����

for both joints� Using the Euler approximation to convert our observer system into discrete time

since it is not linear anymore� leads to

#xk�� � xk � �A#xk � L�yk � G #xk� �M���x����T ����


�



��� Kalman Filter

A more sophisticated method to estimate the velocities is by using an optimized Kalman �lter for

the following system model as in �
�

$x�t� � Ax�t� � 'w�t� ����

q�t� � Cx�t� � e�t� ����

with x� and x� representing joint angle and joint velocity� respectively� w represent white Gaussian

noise with covariance c� The white noise w�t� is a surrogate for �q�t�& the more wide�band �q is�

the better is the approximation of the deterministic robotics model by the stochastic model� Since

robot motion is not well characterized by such a stationary random process� c may be regarded as

a �lter parameter to be adjusted� e�t� represents the quantization error� assumed white with zero

mean� and a variance R de�ned as�

R �
��m



����

where �m � �

encoder resolution  rad
� ������� �
���rad is the interpulse angle for the D�R�� The

matrices A� C� and ' using simply the linear part of the D�R� are given as�

A �

�
� 


� �

�
��
�

C �
h

 �

i
����

' �

�
�




�
��
�

The matrices were transferred into a discrete time system with Matlab�s c�d function� The Kalman

gain matrix was estimated with the Matlab�s dlqe function� and the discrete Kalman �lter was

designed using Matlab�s destim function� For a sampling rate of ���� Hz a covariance c of about


��� achieved the best results for the �lter� The results were as good as using ����� depending on

trajectory and controller� For the velocity error estimation the same �lter design was used�

��� Nonlinear Velocity Observer

The Kalman �lter is a linear state observer� Its gains are optimized for the assumed noise� Another

possible solution to our problem would be to design a state observer� which includes the nonlinear�

ities of the robot� Linear state observer using inverse dynamics control to avoid the nonlinearities

have already been designed �
�� The problem with our robust controllers is that we cannot lin�

earize the system exactly due to the uncertainty of the robot parameters� For the state observer

we can chose between full�dimensional order and reduced�dimensional order design& since we are







is commonly used to compute joint velocity estimates vk ���� The �lter parameter 
 is a design

parameter� If 
 is small� it corresponds to a fast pole near z � �� which provides some low�pass

�ltering to reject unwanted sensor noise� The velocity estimation �lter design can be optimized

for the given encoder noise statistics to reconstruct vk� For the estimation of the velocity error

$ek � qk � qdk one may use the �lter ���

$ek � 
 $ek�� �
�qk � �qk��

T
����

with �qk � qk � qdk � This equals

$ek � 
 $ek�� �
qk � qk��

T
� qdk � qdk��

T
� ��
�

In other words the desired velocity for the velocity error is calculated using the same �lter to avoid

a phase shift between the desired and the actual velocity which would lead to oscillation in the

control� However with the high sampling rate that we are using in our controllers� the above �lters

were found to be inadequate and we encountered severe resonance problems from all of the control

algorithms �and even with a simple PD controller�� For this reason� more sophisticated �lters had

to be designed to reconstruct the velocity from the encoder measurements�

The trade�o� lies between noise reduction and using the most recent values for the control� One

solution for the D�R� is to simply average the last n velocity estimates with $qk from �����

vk �



nT

n��X
i��

$qk�i �



n
�qk � qk�n�� ����

For the D�R� n � 
 was found to remove the noise best �at a sampling rate of ���� Hz�� Equation

���� is comparable to using a lower sample rate for the velocity estimation to avoid the velocity

degradation which comes with such a high sampling frequency� For the velocity errors it turned

out that

$ek �



n

n��X
i��

�qk � �qk��
nT

�



nT
�qk � qk�n�� 


nT
�qdk � qdk�n� ����

which only compensated for the phase shift between desired an actual velocity was not working

su�ciently� Therefore the �lter

$ek �



n

n��X
i��

$ek�i �
qk � qk��

T
� qdk � qdk��

T
����

had to be used� This combination eliminates high frequency noise in a very simple way� Of course�

for the velocity estimation also

vk �



n

n��X
i��

vk�i �
qk � qk��

T
����

can be used� However the tracking errors seem to be slightly larger with this velocity �lter than

with ����� The choice n � 
 achieved the best results in this case also�


�




 Sampling Rate and Velocity Estimates

The controllers are designed in continuous time and the theoretical proofs of convergence are valid

only in continuous time� In continuous time the tracking errors generally decrease as gains are

increased� This is� in fact� another consequence of the passivity property of rigid robots� Therefore

it is desirable to chose the gains as high as possible in order to improve accuracy� On the other

hand high gains require a high sampling rate to guarantee that the approximation of the continuous

time controller by the discrete time controller stays feasible� Choosing the sampling rate too low

for the selected gains results in chattering of the input torques� Since the input torques are limited

due to the characteristics of the motors the chattering might become visible in the joint positions�

which increases the chattering in the velocity to an even higher extend� Since the velocity is used

in the control law this feedback will cause the robot to vibrate� Furthermore these vibrations might

resonate the system� and the performance will deteriorate if gains are chosen too high� Because

of the speed of our DSP development system� we were able to run all control experiments using a

sample rate of ����Hz� The gains were empirically designed accordingly for the given sample rate�

Note that all of the algorithms depend on one or more parameters �i� It can be shown that

increasing these ��values will also decrease the chattering� The control laws are discontinuous at

�i � �� so for any choice of gains and sampling period the control will chatter for small �� However

increasing � too high will reduce accuracy� since these parameters determine the size of the ultimate

boundedness region in state space� In other words� increasing � has the e�ect of detuning the system

to reject� unmodeled dynamics� noise and disturbances� This suggest that there exists an optimal

value for �� Below this value the chattering will resonate the system and decrease accuracy� above

this value we are detuning the system more than necessary which results in larger tracking errors�

Our approach was to empirically determine the smallest ��values and largest gains� K� %� possible

for the given trajectories�

� Velocity Estimation

The robust control algorithms in this paper assume that both the joint positions q and joint

velocities $q are measured exactly� However� as is commonly the case� only the joint positions are

available from optical encoders� and the joint velocities must be estimated from these position

measurements ���� Generally� one �nds that simply computing the joint velocities using the Euler

approximation

$qk �
qk � qk��

T
����

does not work� especially as the sampling rate increases �
�� due to the encoder measurement noise�

For this reason� several di�erent schemes to estimate the velocity were analyzed and tested� In

general� a �ltered derivative of the form

vk � 
vk�� �
qk � qk��

T
� ��
�







In order to quantitatively compare the performance of the various algorithms we used several

error measures� We computed both the L� and L� norms of the tracking error of each joint in

joint space and the L� and L� norm of the end�e�ector tracking error in task space� These errors

are presented in table form in subsequent sections along with plots of the errors themselves and of

the torque inputs�

Recall that the L� norm of the tracking error of joint n is

jenj ��

vuuuut
tfZ
t�

�qn � qdn�
�dt ����

where n � f
� �g is the joint number� Since data is only send back at discrete time intervals� we

discretize equation ���� as�

jenj ��

vuut kX
i��

�qn � qdn�
��T ��
�

�
p
�T

vuut kX
i��

�qn � qdn�
� ����

Because
p
�T is constant we will include it on the left side which yields our de�nition of the joint

space error criteria�

jerrornj �� jenjp
�T

�

vuut kX
i��

�qn � qdn�
� ����

The maximal error in joint space is

maxerrorn � maxjqn � qdnj ����

The L� norm of the joint error vector is given by

jej ��

vuuuut
tfZ
t�

�q� � qd��
� � �q� � qd��

� dt ����

However if we are looking at the desired �end�e�ector	 position we should weight the error of each

joint accordingly� Therefore a better single criterion is the error in task space� We de�ne the task

space error as the distance between the actual and the desired �end�e�ector	 position� Analogous

to ���� we de�ne

jerrortask spacej ��

vuuut kX
i��

�
�
�����



x� xd

y � yd

������
�

�
A

�

����

where k � k� is the Euclidean norm� The maximum error in task space is

maxerrortask space �� max

�����



x� xd

y � yd

������
�

� ����

For our experimental comparison we will present the measures ����� ����� ����� and �����


�



where � represents the di�erence between the maximum load and no load cases� These uncertainty

bounds may depend on trigonometric functions of the generalized coordinates or they can be further

simpli�ed by using bound of these trigonometric functions� We note that Liu and Goldenberg ���

de�ne the nominal values of �M�
and �C�

by using the unloaded arm� i�e� at the lower end of the

uncertainty interval� We found that the performance of the algorithm on the actual manipulator

with load was poor with these nominal parameters� For this reason� in this paper we will instead

de�ne the nominal values in the center of the uncertainty interval as in the algorithms �SP
� and

�SP��� as doing so greatly improves the tracking performance�

Comparing this algorithm with the algorithms �SP
� and �SP�� of Spong� we see that it requires

more on�line computation� However the principle of the control law is very similar to SP
 or SP�

and in fact mainly just a di�erent parameterization of the Euler�Lagrange dynamics� using an

extended de�nition of the parameter vector ��

� The Reference Trajectories and Error Criteria

In order to compare the performance of the controllers on D�R� we picked three joint space tra�

jectories and one task space trajectory� The joint space trajectories were�


� The output of a linear second order critically damped reference model�

�qd � ��� $qd � ��qd � ��v ����

where v was a step change from zero to ninety degrees for each joint�

�� A cubic polynomial trajectory �CPT�

qd � a� � a�t� a�t
� � a�t

� ����

where the desired motion is from zero to ninety degrees and back to zero degrees over two

seconds�


� A sinusoid

qd � a sin��t� ����

The task space trajectory was a circle of radius r located at coordinates �a� b� in the robot�s

workspace� i�e��

xd � a� r cos��t� ����

yd � b� r sin��t� ��
�

The inverse kinematics of the robot were then used to translate this task space trajectory into a

joint space trajectory� The reader is referred to ��� for a detailed description of these trajectories�

�



with the additional control inputs uM and uC � de�ned as follows� using the same technique as in

�

��

uM �

�����
����
��M Y T

M
	a
r

kY T
M
	a
rk if

���Y T
M �a�r

��� � �M

��M
�M

Y T
M�a�r if

���Y T
M �a�r

��� � �M

�
��

�LG�

uC �

�����
����

��C Y T
C
	 �q�v
r

kY TC 	 �q�v
rk if
���Y T

C � $q�v�r
���� �C

��C
�C

Y T
C � $q�v�r if

���Y T
C � $q�v�r

���� �C

�
��

where �M � �C � and are positive constants� It is proved in ��� that the tracking error is uniformly

ultimately bounded using the same Lyapunov function ���� as in �

�� For the two�link robot�

D�R�� the various quantities are given by

YM �a� �

�
a� a� �

� a� a�

�
����

�M �q� �

�
BB�

d��

d��

d��

�
CCA ��
�

and d���d��� and d�� as in �
�

YC� $q�v� �

�
$q�v� � � $q� � $q��v�

� $q�v�

�
����

�C�q� � h ��
�

with h as in ���� Recall that �M and �C are not necessarily constant vectors in this formulation�

The uncertainty bounds� �M and �C � are obtained as�

�M �
q
��M�

� ��M�
� ��M�

����

�C � �h ����

with

�M�
� �d���q�� ����

�M�
� �d���q��

�M�
� �d��

�h � �h�q��

�



with y �� C�q� $q�v and yi � $qTLi�q�v where Li�q� is a square matrix�

The proof of uniform ultimate boundedness utilizes the Lyapunov function

V �



�
rTM�q�r� $�q

T $�q ����

Comparing this algorithm with the controllers SP
 and SP�� we see that ZC requires less on�line

computation because no regressor matrix is computed� However� the calculation of the uncertainty

bounds is more complicated�

��� The Algorithm LG

Liu and Goldenberg ��� propose a robust controller that does not linearly parameterize the La�

grangian as a whole� but� instead� parameterizes the inertia matrix M and the Coriolis and cen�

trifugal matrix C as

M�q��q � YM ��q��M�q� �
��

and

C�q� $q� $q � YC� $q��C�q�� �

�

Thus� the uncertainty is represented by the vectors �M and �C � which are no longer constant�

but are� in general� functions of the con�guration q� These uncertainty terms are assumed to be

bounded as follows�

k��M�q�k �� k�M�q�� �M�
�q�k � �M�q� �
��

k��C�q�k �� k�C�q�� �C�
�q�k � �C�q� �

�

where �M�
�q and �C�

�q� represent the nominal values� The nominal control vector is then de�ned

as in �

�

� � � M��q�a� C��q� $q�v�Kr �
��

� YM �a��M�
�q� � YC� $q�v��C�

�q��Kr �
��

with the quantities r� v� and a are de�ned as in �

�� The control input � is then de�ned as

� � �� � YM�a�uM � YC� $q�v�uC �
��

� YM�a���M�
�q� � uM� � YC� $q�v���C�

�q� � uC��Kr

where the vectors uM and uC are designed to achieve robustness to the parametric uncertainty�

Substituting the control law �
�� in �
� they obtain after some algebra

M�q�$r� C�q� $q�r�Kr � YM �a����M � uM� � YC� $q�v����C � uC� �
��

�



where 
i denotes the i
th component of the vector Y Tr and �i are positive constants�

With either of these additional control inputs� �SP
� or �SP��� the control law �
�� is continuous

and it can be shown using the Lyapunov function

V �



�
rTM�q�r� $�q

T
%TK $�q ����

that the closed loop systems are uniformly ultimately bounded �u�u�b�� as de�ned in ���� See �

�

for the proof�

��� The Algorithm ZC

The algorithm� ZC� of Zenieh and Corless �
�� does not exploit the linear parametrization property�

Uncertainty in the physical parameters is estimated by the bounds ��� ��� and �� shown below�

These inequalities hold for all q� $q� and all uncertainty �� which is called the lumped uncertainty

term�

	min�M�q�� � �� � � ��
�

	max�M�q�� � �� ����

kC�q� $q�k � ��k $qk ��
�

where 	min��� and 	max��� denote� respectively� the minimum and maximum eigenvalues of a matrix�

Zenieh and Corless propose an s�� tracking controller with the rate of convergence � � � and a

prespeci�ed tolerance s � �� which guarantees that the robot trajectory exponentially converges to

any desired trajectory with the rate � and to within the tolerance s� Choosing a positive de�nite

symmetric diagonal gain matrix % satisfying

	min�%� � � ����

with � the desired convergence rate and r� v� and �q de�ned as in �

�� the controller is given by

� � �Kr� ��r
k�rk��

� �� ��k $vk� ��kvkk $qk
�ZC� ����

where K is any positive�de�nite� symmetric� matrix which satis�es

	min�K� � ���� ����

� is any positive scalar satisfying

� � ��s��	min�K�
��

��
����

The bound �� may be computed using

�� �
vuut nX

i��

kLi�q�k� 	q� � ����

�



control vector � � as

� � �� � Y �q� $q�v� a�u � Y �q� $q�v� a���� � u��Kr �
��

where the vector u � Rp is an additional control input designed to provide robustness to the

parameter uncertainty� Substituting �
�� into ��� yields� after some algebra�

M�q�$r� C�q� $q�r�Kr � Y �q� $q�v� a����� u� �

�

For the parameterization � of D�R� we de�ne

� �

�
BB�

m�l
�
c� �m�l

�
� � I�

m�l
�
c� � I�

m�l�lc�

�
CCA �
��

which leads to the regressor matrix�

Y �q� $q�v� a� �

�
a� a� � a� y��

� a� � a� y��

�
�
��

where

y�� � cos�q����a� � a��� sin�q��� $q�v� � $q��v� � v���

y�� � cos�q��a� � sin�q�� $q�v�

For the nominal parameter vector �� we chose the mean value of � for the unloaded arm and the

arm carrying a maximum load� i�e�

�� �



�
��maximumload� �unloaded� �
��

The algorithm SP
 calculates the additional control input u in �
�� based on a single measure

of the uncertainty� �� where

� � �
pX

i��

�i�
�

� �
��

as follows�

u �

����
���
�� Y T r

kY T rk
if

���Y T r
��� � �

��
� Y

T r if
���Y T r

��� � �

�SP�� �
��

and � � ��

The algorithm SP� assigns di�erent �weights	 or gains to the component of u by de�ning the

ith component of the control input u as

ui �

����
���

��i �i
j�ij

if j
ij � �i

��i
�i

i if j
ij � �i

�SP�� �
��

�



�� �Linear Parametrizability� There exist a vector � � ���� � � � � �p�
T � Rp� of link parameters�

and a matrix Y �q� $q� �q�� called the regressor� such that

M�q��q� C�q� $q� $q � Y �q� $q� �q�� � � ���


 The Algorithms and Trajectories

In this section we describe the four robust control algorithms considered in this paper� The �rst

two algorithms were derived by Spong in �

�� The third algorithm was derived by Zenieh and

Corless in �
��� The fourth algorithm is due to Liu and Goldenberg and appeared in ���� The four

algorithms will be designated SP
� SP�� ZC� and LG� respectively� for conciseness� All of these

algorithms exploit the skew�symmetry property of the robot dynamics and guarantee uniform

ultimate boundedness of the tracking error provided bounds on the uncertainty are given a priori

as described in� for example� ���� In addition� the algorithms SP
 and SP� exploit the linear

parametrizability property� We detail the speci�cs of these algorithms below� The reader is referred

to the original references for the proofs of stability and convergence which all use similar Lyapunov

arguments�

��� The Algorithms SP� and SP�

Both of the algorithms SP
 and SP� from �

� exploit the linear parameterizability of robot dy�

namics given by equation ���� It is assumed only that the parameter vector � is �uncertain	 which

means that there exists a nominal parameter vector �� � ����� � � ��p��
T � Rp and nonnegative

constants �i � R� such that� for i � 
� � � � � p���� ��i��� �� k�i � �i�k � �i� ���

De�ne a nominal control vector � � as

� � � M��q�a� C��q� $q�v�Kr ���

� Y �q� $q�v� a��� �Kr �
��

where the quantities r� v� and a are given by

r � $�q�%�q

v � $qd � %�q

a � $v

�q � q� qd �

�

and qd is a given twice continuously di�erentiable reference trajectory� The gain matrices K and

% are positive de�nite diagonal matrices� The control input � is de�ned in terms of the nominal

�



the vector of applied joint torques� Refering to Figure ���� the terms in the dynamic equations are

given by

l1

lc1

lc2

x

y

q2l2

m1, I1

m2, I2

q1

Figure �� Schematic diagram of the two�link direct�drive D�R�

M�q� �

�
d�� d��

d�� d��

�
���

with

d�� � m�l
�
c� �m��l

�
� � l�c� � �l�lc� cos q�� � I� � I��

d�� � d�� � m��l
�
c� � l�lc� cos q�� � I��

d�� � m�l
�
c� � I�� �
�

C�q� $q� �

�
h $q� h� $q� � $q��

�h $q� �

�
���

with

h � �m�l�lc� sin q�� ���

The link parameters for the D�R� are given in the appendix�

We recall the fundamental properties of skew symmetry and linear parametrizability of these

equation� See ��� for details�


� �Skew Symmetry� The matrix

N�q� $q� � $M�q�� �C�q� $q� ���

is skew symmetric� This implies that the robot dynamics de�ne a passive mapping between

joint torque and joint velocity�






Figure 
� The two�link planar arm �D�R�	

control algorithms themselves are implemented on an MX�

 DSP development system from Inte�

grated Motions� Inc�� �IMI�� which utilizes a Texas Instruments TMS
��C

 
��bit !oating point

processor with �� ns single�cycle instruction execution time� Control Programs are written in C�

compiled on a Dell PC��� workstation� and loaded into the MX�

 through a serial communication

link� IMI provides a library of support functions for tasks such as encoder reading and serial com�

munication port service� Data are sent back to the PC during robot operation through a second

serial communication link and stored in the PC for analysis in Matlab�

� Robot Dynamics

Since the motion of the SCARA�like manipulator is in the horizontal plane� the gravitational

torques about the joints are identically zero� which simpli�es the derivation of both the dynamic

equations of motion and the control input� The standard Euler�Lagrange dynamic equations for

this system may therefore be written as �

�

M�q��q� C�q� $q� $q � � with q � Rn� � � Rn� �
�

where M�q� � Rn�n is the inertia matrix� and q� $q� and �q are the joint angles� velocities� and

accelerations� respectively� The vector C�q� $q� $q represents centrifugal and Coriolis terms� and � is

�



An Experimental Comparison of Robust Control

Algorithms On a Direct Drive Manipulator �

Andr�e Jaritz

Mark W� Spong

Coordinated Science Laboratory

University of Illinois at Urbana�Champaign

���� W� Main St�	 Urbana	 Ill� 
����

m�spong�uiuc�edu

Abstract

In this paper we present an experimental comparison of recent passivity based robust control

algorithms on a two link direct drive robot arm� The manipulator is actuated with high torque

brushless DC motors and is controlled by a DSP development system interfaced to a PC���

workstation� Four algorithms are compared with respect to ease of design� implementation� and

performance of the closed loop systems�

� Introduction

In this paper we summarize the results of a systematic comparison of passivity based robust con�

trol algorithms on the two�link direct drive robot manipulator shown below in Figure �
�� Four

algorithms are compared with respect to ease of design� implementation� and performance of the

closed�loop system� The reader is referred to the report ��� for the complete study� which also

includes data for additional algorithms beyond those presented here�

The manipulator used in the study� known as D�R�� was constructed with Compumotor Model

DM
�
��B brushless DC motors� controlled via transformerless drivers operating in torque mode�

Maximum torque is produced at �� V from the higher�level controller which corresponds to a

maximum torque command of �

�� Nm �
��� Integrated optical encoders provide ���
�� lines of

resolution �
��� The links were designed in AutoCAD and constructed from aluminum �
��� The
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